3.521 \(\int \frac{c+d x+e x^2+f x^3}{\sqrt{a+b x^4}} \, dx\)

Optimal. Leaf size=276 \[ \frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\frac{\sqrt{b} c}{\sqrt{a}}+e\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 b^{3/4} \sqrt{a+b x^4}}-\frac{\sqrt [4]{a} e \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{b^{3/4} \sqrt{a+b x^4}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{2 \sqrt{b}}+\frac{e x \sqrt{a+b x^4}}{\sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{f \sqrt{a+b x^4}}{2 b} \]

[Out]

(f*Sqrt[a + b*x^4])/(2*b) + (e*x*Sqrt[a + b*x^4])/(Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^
2)) + (d*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(2*Sqrt[b]) - (a^(1/4)*e*(Sqrt[
a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan
[(b^(1/4)*x)/a^(1/4)], 1/2])/(b^(3/4)*Sqrt[a + b*x^4]) + (a^(1/4)*((Sqrt[b]*c)/S
qrt[a] + e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*
EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*b^(3/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.353414, antiderivative size = 276, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.296 \[ \frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\frac{\sqrt{b} c}{\sqrt{a}}+e\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 b^{3/4} \sqrt{a+b x^4}}-\frac{\sqrt [4]{a} e \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{b^{3/4} \sqrt{a+b x^4}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{2 \sqrt{b}}+\frac{e x \sqrt{a+b x^4}}{\sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{f \sqrt{a+b x^4}}{2 b} \]

Antiderivative was successfully verified.

[In]  Int[(c + d*x + e*x^2 + f*x^3)/Sqrt[a + b*x^4],x]

[Out]

(f*Sqrt[a + b*x^4])/(2*b) + (e*x*Sqrt[a + b*x^4])/(Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^
2)) + (d*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(2*Sqrt[b]) - (a^(1/4)*e*(Sqrt[
a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan
[(b^(1/4)*x)/a^(1/4)], 1/2])/(b^(3/4)*Sqrt[a + b*x^4]) + (a^(1/4)*((Sqrt[b]*c)/S
qrt[a] + e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*
EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*b^(3/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 41.2453, size = 248, normalized size = 0.9 \[ - \frac{\sqrt [4]{a} e \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) E\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{b^{\frac{3}{4}} \sqrt{a + b x^{4}}} + \frac{f \sqrt{a + b x^{4}}}{2 b} + \frac{d \operatorname{atanh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a + b x^{4}}} \right )}}{2 \sqrt{b}} + \frac{e x \sqrt{a + b x^{4}}}{\sqrt{b} \left (\sqrt{a} + \sqrt{b} x^{2}\right )} + \frac{\sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) \left (\sqrt{a} e + \sqrt{b} c\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{2 \sqrt [4]{a} b^{\frac{3}{4}} \sqrt{a + b x^{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(1/2),x)

[Out]

-a**(1/4)*e*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x*
*2)*elliptic_e(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(b**(3/4)*sqrt(a + b*x**4)) + f
*sqrt(a + b*x**4)/(2*b) + d*atanh(sqrt(b)*x**2/sqrt(a + b*x**4))/(2*sqrt(b)) + e
*x*sqrt(a + b*x**4)/(sqrt(b)*(sqrt(a) + sqrt(b)*x**2)) + sqrt((a + b*x**4)/(sqrt
(a) + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x**2)*(sqrt(a)*e + sqrt(b)*c)*ellipti
c_f(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(2*a**(1/4)*b**(3/4)*sqrt(a + b*x**4))

_______________________________________________________________________________________

Mathematica [C]  time = 0.415079, size = 225, normalized size = 0.82 \[ \frac{-2 \sqrt{b} \sqrt{\frac{b x^4}{a}+1} \left (\sqrt{a} e+i \sqrt{b} c\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \left (\sqrt{b} d \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )+a f+b f x^4\right )+2 \sqrt{a} \sqrt{b} e \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{2 b \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[(c + d*x + e*x^2 + f*x^3)/Sqrt[a + b*x^4],x]

[Out]

(Sqrt[(I*Sqrt[b])/Sqrt[a]]*(a*f + b*f*x^4 + Sqrt[b]*d*Sqrt[a + b*x^4]*ArcTanh[(S
qrt[b]*x^2)/Sqrt[a + b*x^4]]) + 2*Sqrt[a]*Sqrt[b]*e*Sqrt[1 + (b*x^4)/a]*Elliptic
E[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] - 2*Sqrt[b]*(I*Sqrt[b]*c + Sqrt[a]
*e)*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(
2*Sqrt[(I*Sqrt[b])/Sqrt[a]]*b*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.007, size = 208, normalized size = 0.8 \[{c\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{d}{2}\ln \left ( \sqrt{b}{x}^{2}+\sqrt{b{x}^{4}+a} \right ){\frac{1}{\sqrt{b}}}}+{ie\sqrt{a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}{\frac{1}{\sqrt{b}}}}+{\frac{f}{2\,b}\sqrt{b{x}^{4}+a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(1/2),x)

[Out]

c/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)
*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/2*d*ln(b^
(1/2)*x^2+(b*x^4+a)^(1/2))/b^(1/2)+I*e*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^
(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)/b^(1/2)
*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2)
,I))+1/2*f*(b*x^4+a)^(1/2)/b

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{f x^{3} + e x^{2} + d x + c}{\sqrt{b x^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)/sqrt(b*x^4 + a),x, algorithm="maxima")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)/sqrt(b*x^4 + a), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{f x^{3} + e x^{2} + d x + c}{\sqrt{b x^{4} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)/sqrt(b*x^4 + a),x, algorithm="fricas")

[Out]

integral((f*x^3 + e*x^2 + d*x + c)/sqrt(b*x^4 + a), x)

_______________________________________________________________________________________

Sympy [A]  time = 3.68323, size = 128, normalized size = 0.46 \[ f \left (\begin{cases} \frac{x^{4}}{4 \sqrt{a}} & \text{for}\: b = 0 \\\frac{\sqrt{a + b x^{4}}}{2 b} & \text{otherwise} \end{cases}\right ) + \frac{d \operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{2 \sqrt{b}} + \frac{c x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{5}{4}\right )} + \frac{e x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{7}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(1/2),x)

[Out]

f*Piecewise((x**4/(4*sqrt(a)), Eq(b, 0)), (sqrt(a + b*x**4)/(2*b), True)) + d*as
inh(sqrt(b)*x**2/sqrt(a))/(2*sqrt(b)) + c*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,),
 b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4)) + e*x**3*gamma(3/4)*hyper((1/2
, 3/4), (7/4,), b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(7/4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{f x^{3} + e x^{2} + d x + c}{\sqrt{b x^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)/sqrt(b*x^4 + a),x, algorithm="giac")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)/sqrt(b*x^4 + a), x)